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Abstract
We study the spectrum of primordial fluctuations and the scale dependence of
the inflaton spectral index due to self-interactions of the field. We compute the
spectrum of fluctuations by applying nonequilibrium renormalization group
techniques.

PACS numbers: 98.80.Cq, 11.10.Hi, 11.10.Jj

In this paper, we explore a mechanism to explain departures of the primordial fluctuations from
the spectrum of a free inflaton field. This is important, because the spectrum of the inflaton
field at the exit of the horizon is directly related to the level of inhomogeneity of the observed
universe. The question we want to address is how the nonlinearities for an interacting field
affect the predicted spectrum [1–4]. To this end we will use a nonequilibrium renormalization
group (RG).

If the inflaton field were a free field, its spectrum would be of Harrison–Zel’dovich type.
At the horizon exit (HE) of the mode with wave number k it would be

〈�(k, t)�(k, t)〉HE ∝ 1

k3
. (1)

The spectral index n(k) measures deviations from this law. It is defined by

〈�(k, t)�(k, t)〉HE ∝ 1

k3
kn(k)−1. (2)

Hence, the Harrison–Zel’dovich spectrum (1) has n(k) = 1. Present experiments show that
the spectral index is close to 1 and that presumably it runs with the scale

n(k) = 1 + �(k), (3)

just at the edge of the experimental precision [5].
We will compute the spectrum of the inflaton field for a toy model of inflation. The goal

is to show how a RG defined for nonequilibrium problems can be used to predict the spectrum
of an interacting inflaton field. We will assume a spatially flat Robertson–Walker metric with
constant expansion rate H,

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), a(t) = a0 eHt , (4)
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and an inflaton field described by a massless λφ4 action

S[�] =
∫

dt a(t)3

[ ∫
d3q

1

2

(
�̇2 − q2 �2

a(t)2
+ ξR�2

)

− λ

4!

∫ 4∏
i=1

d3qi δ3(q1 + · · · + q4)�1�2�3�4

]
. (5)

[�2 ≡ �(q, t)�(−q, t), and �i ≡ �(qi , t).] Transforming to conformal coordinates

η = −(aH)−1, (6a)

a� = �c, (6b)

and ignoring all the mass terms, the original theory is mapped into a scalar field theory in flat
spacetime with time coordinate −∞ < η < 0,

S[�c] =
∫

dη

[∫
d3q

1

2

(
�′2

c − q2�2
c

) − λ

4!

∫ 4∏
i=1

d3qi δ3 (q1 + · · · + q4) �c1�c2�c3�c4

]
,

(7)

where �′
c = ∂�c/∂η. We can show that if λ = 0, expression (9) is regained. Note that when

λ = 0, the expectation value for the product of two conformal fields �c is given by the usual
expression for a free field in flat spacetime:

〈�c(k, η)�c(k, η)〉 ∝ 1

k
. (8)

Using (6b), the expectation value for the original theory is

〈�(k, t)�(k, t)〉 ∝ 1

a2(t)k
. (9)

To obtain the spectrum, this expression must be evaluated when the mode k exits the horizon.
This happens when its physical wavelength k−1a(t) equals the horizon size H−1, that is, when

a(t) = kH−1. (10)

Thus, replacing this value of a in (9), equation (1) is recovered. We will use RG techniques to
compute the spectrum when λ �= 0.

The basic idea of RG for systems in equilibrium (where time does not enter in the
description) is the coarse graining of the original system, i.e. the change in the resolution with
which the system is observed [6]. Given a system with a range of scales which goes up to
wave number 	, if we are only interested in scales up to wave number k < 	, we can separate
the original system in two sectors: a lower wave number sector, with k′ � k, the relevant
system, and a higher wave number sector with k < k′ � 	, the environment. Once this
division is done, the environment modes are eliminated from the description. In equilibrium,
this is achieved by computing the coarse grained ‘in–out’ effective action for the lower sector,
complemented with a rescaling of the fields and momenta that restores the cutoff and the
coefficient of the q2 term in the action to their initial values. The elimination of the modes
between 	 and k proceeds by infinitesimal steps. In this way, the calculation involves only
tree and one-loop diagrams, and the resulting equations form a set of differential equations for
the parameters that define the effective action [7].

Essentially, the same scheme can be used for nonequilibrium systems. The main difference
with the usual approach is that the time variable must enter in the description. We want to
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compute true expectation values at given times, not transition amplitudes between ‘in’ and
‘out’ asymptotic states, far away in the future and in the past. We want to follow the real
and causal evolution of expectation values, for which the usual ‘in–out’ representation is not
appropriate. A suitable description of nonequilibrium systems is given within the ‘closed time
path’ (CTP) formalism [8–12]. The number of fields is doubled, path integrals are over two
histories ϕ+ and ϕ− that coincide at the time of observation T, which is a new dimensional
parameter of the theory.

The possibility of couplings between the two histories enlarges the parameter space.
Notably, it includes noise and dissipation. Written in terms of φ = ϕ+ −ϕ− and ϕ = ϕ+ + ϕ−,
the free action for a scalar field in the CTP formalism is

S0[φ, ϕ] =
∫ T

0
dt

∫
d3q

[
1

2
φ̇ ϕ̇ − 1

2
(q2 + m2)φϕ − κ φϕ̇ +

i

2
ν φφ

]
. (11)

(φϕ ≡ φ(q, t)ϕ(−q, t), etc). Here κ is associated with dissipation and ν to noise. For a given
order n in the fields, there are n possible interaction terms. Thus, for example, the quartic
interactions that can appear in the CTP action are∫ T

0

4∏
i=1

dti

∫ 4∏
i=1

d3qi[v41(q, t) φ1 ϕ2ϕ3ϕ4 + iv42(q, t) φ1φ2 ϕ3ϕ4

+ v43(q, t) φ1φ2φ3 ϕ4 + iv44(q, t) φ1φ2φ3φ4]. (12)

(φi = φ(qi, ti), etc). In principle, all the allowed couplings must be taken into account to
compute the RG equations.

Even when the initial action at scale 	 is the usual, local, massless, λϕ4 action, which in
the CTP representation reads

S	 =
∫ T

0
dt

[∫
d3q

1

2
(φ̇ϕ̇ − q2φϕ) − λ

48

∫ 4∏
i=1

d3qi(φ1 ϕ2ϕ3ϕ4 + φ1φ2φ3 ϕ4)

]
, (13)

as short wave number modes are eliminated out, the RG flow generates all the possible terms,
with an arbitrary number of fields and nonlocal dependences (but with certain constrains
imposed by the CTP formalism). However, after a brief excursion, most of these terms will
go to zero along with λ, except for a few terms in the free action. The effective action at scale
k will be given approximately by (11), but its parameters will depend on both, the scale k and
the time T:

Sk ∼
∫ T

0
dt

∫
d3q

{
1

2
φ̇ϕ̇ − 1

2

[
q2 +

(
	

k

)2

m2(k, T )

]
φϕ

−
(

	

k

)
κ(k, T )φϕ̇ +

i

2

(
	

k

)2

ν(k, T )φ2

}
. (14)

Here we have extracted from m2, κ and ν the factors merely induced by the rescaling. The
influence of the environment on the spectrum of the long wave modes will manifest through
these terms [13–16].

The flow of the RG drives the initial interacting theory (13) towards the free theory (14)
and allows us to find a relation between expectation values associated with each theory. The
relation is

G(k, t, µ(	, T )) = (	/k)α(k,T ) G(	, (	/k)β(k,T ) t, µ(k, T )). (15)

On the left-hand side, G is the two field expectation value computed for a mode k at time t,
and µ(	, T ) stands for the set of parameters which define the action at scale 	. In our case
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Figure 1. n(k) − 1 as function of k (solid curve), with η∗ = −200, and λ = 10−3. The dashed
curve shows n(k) − 1 once the rapidly oscillatory terms have been removed. The main departures
from zero come from the mass term induced by the coarse graining.

the only parameter is the coupling constant λ. On the right-hand side, G is the expectation
value of the theory defined by the set of parameters µ(k, T ), reached after modes between k
and 	 have been eliminated. The relevant parameters in µ(k, T ) are m2(k, T ), κ(k, T ) and
ν(k, T ). Finally, the exponents α and β depend on the trajectory followed by the action when
it goes from scale 	 to k.

Now we connect to the original problem for the power spectrum of an interacting inflaton
field. We must feed the RG group equations with an initial condition at scale 	 and then use
relation (15) to obtain the expectation value for the mode k as it exits the horizon. The initial
condition, in terms of the conformal field, is given by the CTP action at scale 	, equation (13),
where t has to be substituted by the conformal time η. According to equation (10), the mode
k exits the horizon when

η = −k−1. (16)

If inflation starts at η∗, the time that the mode k spends inside the horizon is given by

τk = −k−1 − η∗. (17)

For the interacting theory equation (9) reads

〈�(k, t)�(k, t)〉HE = k−2 G(k, τk, λ). (18)

From equation (15), identifying t and T with τk , we get

〈�(k, t)�(k, t)〉HE = k−2 (	/k)α(k,τk)

×G(	, (	/k)β(k,τk)τk, {m2(k, τk), κ(k, τk), ν(k, τk)}). (19)

Here, the relevant elements of µ(k, τk) have been shown explicitly. The right-hand side of
equation (19) can be calculated using G corresponding to action (14):

G(k, t, {m2, κ, ν}) =
(

2

k
− ν

κω2
0

) [
ω2

0

ω2
− κ2

ω2
cos(2ωt) +

κ

ω
sin(2ωt)

]
e−2κt +

ν

κω2
0

, (20)

where ω2
0 = m2 + k2 and ω2 = ω2

0 − κ2 [17].
The expressions for m2, κ and ν, and for the exponents α and β in equation (19), as

functions of k and τk are given in [17]. In figure 1, we show n(k) − 1, defined in (2), as
function of k for a particular choice of λ and η∗. (We have chosen −η∗ = 200, large enough so
the ratio kmax/kmin can be about 100, the expected ratio between the maximum and minimum
length scales of the inhomogeneities.) The main effects are introduced by the mass term.
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We have presented a toy model for computing the spectrum of the fluctuations of the
inflaton field. At the present stage we do not pretend to derive quantitative conclusions from
this model. Our main concern was to show that the same arguments usually given in the
context of the RG in equilibrium, can be extended to nonequilibrium problems using the CTP
formalism, where noise and dissipation show up naturally.
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